Universidade do Estado do Rio de Janeiro

Nome 3:

17/10/2018

Matrícula: ____

Nome 1:	Matrícula:
Nome 2:	Matrícula:

1.	
2.	
	1. 2.

 \sum

2^a Mini Tarefa - IME - 01 - 00508 - Turma 3 (trio)

1. Seja f uma função tal que $|f(x)| \leq x^2$ para todo $x \in \mathbb{R}$. Prove que f é contínua em x = 0.

Sejam f e g duas funções tais que g é contínua em a e f é contínua em g(a), então $f \circ g$ é contínua em a.

- 2. Usando as propriedades da continuidade, determine todos os pontos onde $f(x) = \frac{sen^2(x^2) + ln(x^2 + 1)}{x^2 \cdot arctg(x)}$.
- 3. Usando as propriedades da continuidade, analise a continuidade das funções trigonométricas sabendo que as funções sen(x) e cos(x) são contínuas em \mathbb{R} .

Dizemos que f é diferenciável em $a \in Dom(f)$ se o limite $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ existe e é finito.

4. Calcule a derivada das seguintes funções nos pontos a indicados:

Exemplo: f(x) = K onde K é uma constante e $a \in \mathbb{R}$

$$\frac{1}{f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}} = \lim_{x \to a} \frac{K - K}{x - a} = \lim_{x \to a} \frac{0}{x - a} = \lim_{x \to a} 0 = 0, \text{ pois } \frac{0}{x - a} = 0, \forall x \neq a.$$

Logo, vemos que a derivada da função constante é igual 0 para todo $a \in \mathbb{R}$, isto é, $D_x(K) = 0$.

(a)
$$f(x) = x e a \in \mathbb{R}$$

(b)
$$f(x) = x^2 e a \in \mathbb{R}$$

Dica: use $x^n - a^n = (x - a) \cdot (x^{n-1} + x^{n-2}a + x^{n-3}a^2 + \dots + xa^{n-2} + a^{n-1})$ nos dois itens (c) e (d).

(c)
$$f(x) = x^n e a \in \mathbb{R}$$

(d)
$$f(x) = \frac{1}{x^n} e \ a \in \mathbb{R} - \{0\}$$

(e)
$$f(x) = \sqrt{x} e a \in (0, +\infty)$$

Dica: Faça a seguinte mudança de variável no limite $\begin{cases} u = \sqrt[n]{x} \Leftrightarrow x = u^n \\ b = \sqrt[n]{a} \Leftrightarrow a = b^n \\ x \to a \Rightarrow u = \sqrt[n]{x} \to \sqrt[n]{a} = b \end{cases}$ no item (f).

(f)
$$f(x) = \sqrt[n]{x} e \ a \in Dom(f) - \{0\}$$

5. Verifique que f(x) = |x| é contínua em x = 0, mas não é diferenciável em x = 0.