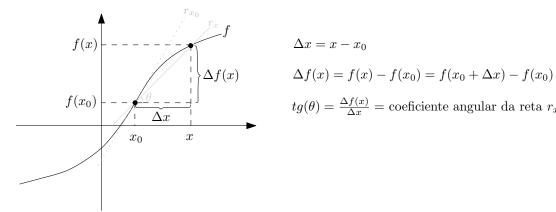
Cálculo I e Cálculo Diferencial e Integral I - Professora: Mariana G. Villapouca

Derivada

Aula 17 - Definição da derivada

Taxa de variação: Sejam $f: I \to \mathbb{R}$ e $x_0 \in I$.



$$\Delta x = x - x_0$$

$$\Delta f(x) = f(x) - f(x_0) = f(x_0 + \Delta x) - f(x_0)$$

$$tg(\theta) = \frac{\Delta f(x)}{\Delta x} = \text{coeficiente angular da reta } r_x$$

- Taxa de variação média: $\frac{\Delta f(x)}{\Delta x}$
- Coeficiente angular da reta tangente: Quando $x \to x_0 \Rightarrow (x, f(x)) \to (x_0, f(x_0)) \Rightarrow$ coeficiente angular de r_x tende ao coeficiente angular de r_{x_0} , isto é,

o coeficiente angular de
$$r_{x_0} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x}$$

Equação da reta tangente $r_{x_0} : y - f(x_0) = (\text{coef. ang. de } r_{x_0}) \cdot (x - x_0)$

• Velocidade média e instantânea: Seja s(t) a função posição de uma partícula no instante t.

$$\boxed{ \text{velocidade m\'edia} = \frac{\text{distância}}{\text{tempo}} = \frac{s(t_0 + \Delta t) - s(t_0)}{\Delta t}}$$

Observe que se Δt for bem pequeno a velocidade média se aproxima da velocidade no instante t_0 , isto é,

velocidade em
$$t_0 = \lim_{\Delta t \to 0} \frac{s(t_0 + \Delta t) - s(t_0)}{\Delta t}$$

Derivada de uma função

Definição 1. Sejam f uma função e $x_0 \in Dom(f)$. Definimos a derivada de f em x_0 como sendo

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

quando o limite acima existe e é finito.

Se f admite derivada em x_0 , então dizemos que f é derivável ou diferenciável em x_0 . Dizemos apenas que f é derivável ou diferenciável quando admite derivada em todos os pontos do seu domínio.

78

Observação 1. Como $f'(x_0)$ (quando existe) é o coeficiente angular da reta tangente ao gráfico de f no ponto $(x_0, f(x_0))$, então a equação de tal reta será

$$y - f(x_0) = f'(x_0)(x - x_0)$$

Definição 2 (Derivada nos extremos do intervalo). Seja uma função $f:[a,b]\to\mathbb{R}$ derivável, então

•
$$f'(a) = f'_{+}(a) = \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0^{+}} \frac{f(a+h) - f(a)}{h}$$

•
$$f'(b) = f'_{-}(b) = \lim_{x \to b^{-}} \frac{f(x) - f(b)}{x - b} = \lim_{h \to 0^{+}} \frac{f(b + h) - f(b)}{h}$$

Observação 2 (Outras notações).

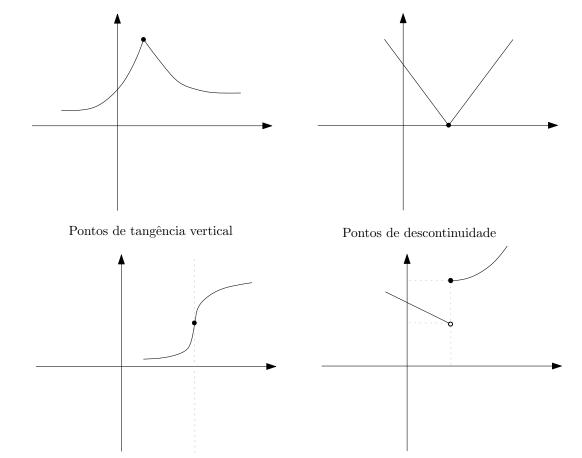
•
$$f'(x) = \frac{df}{dx}(x) = D_x(f(x))$$

• Se
$$y = f(x)$$
, $f'(x) = \frac{dy}{dx}$

Pico

Observação 3. Geometricamente, os pontos de diferenciabilidade de uma função f são aqueles onde a curva y = f(x) tem uma reta tangente, e os pontos de não-diferenciabilidade são aqueles onde a curva não tem reta tangente. Intuitivamente, os pontos de não-diferenciabilidade mais comuns são:

Pico



Teorema 1 (Relação entre diferenciabilidade e continuidade). Se f é diferenciável em x_0 , então f é contínua em x_0 .

demonstração: Se f é diferenciável em x_0 , então existe

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Assim,

$$\lim_{h \to 0} [f(x_0 + h) - f(x_0)] = \lim_{h \to 0} [f(x_0 + h) - f(x_0)] \cdot \frac{h}{h} = \lim_{h \to 0} \frac{[f(x_0 + h) - f(x_0)]}{h} \cdot h = f'(x_0) \cdot 0 = 0$$
Logo,

$$\lim_{h \to 0} f(x_0 + h) = f(x_0) \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0),$$

isto é, f é contínua em x_0 .

Observação 4. Nem toda função contínua é diferenciável!!!

Por exemplo, a função f(x) = |x| é contínua em x = 0, mas não é diferenciável em x = 0. (Verifique!)

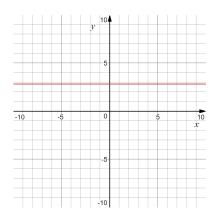
Cálculo I e Cálculo Diferencial e Integral I - Professora: Mariana G. Villapouca

Derivada

Aula 18 - Derivada das funções básicas

Derivadas das funções básicas:

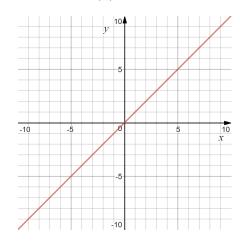
Função constante: Seja f(x) = K, onde $K \in \mathbb{R}$ é constante.



$$x_0 \in Dom(f) = f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{K - K}{x - x_0} = \lim_{x \to x_0} \frac{0}{x - x_0} = 0.$$

Logo,
$$D_x(K) = 0, \forall x \in \mathbb{R}$$
.

Função linear: Seja f(x) = x.

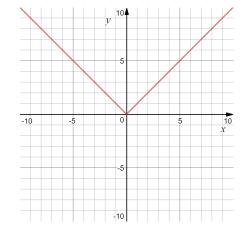


$$x_0 \in Dom(f) =$$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x - x_0}{x - x_0} = \lim_{x \to x_0} 1 = 1.$$

Logo,
$$D_x(x) = 1, \forall x \in \mathbb{R}$$
.

Função modular: Seja f(x) = |x|.



$$Dom(f) =$$

Iremos separar a demonstração em 3 casos:

•
$$x_0 > 0$$

•
$$x_0 < 0$$

•
$$x_0 = 0$$

Logo,
$$D_x(|x|) = \frac{x}{|x|}, \forall x \neq 0$$
.

Funções potência:

•
$$f(x) = x^2$$

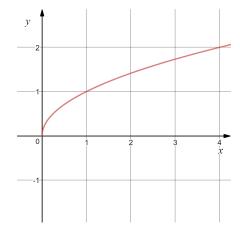
Logo,
$$D_x(x^2) = 2x, \forall x \in \mathbb{R}$$
.
• $f(x) = x^n, n \in \mathbb{N}$

•
$$f(x) = x^n, n \in \mathbb{N}$$

Logo,
$$D_x(x^n) = n \cdot x^{n-1}$$

Logo, $D_x(x^n) = n \cdot x^{n-1}$. **Exercício:** Determine a equação da reta tangente ao gráfico da $f(x) = x^2$ no ponto (1, f(1)).

• Seja $f(x) = \sqrt{x} = x^{\frac{1}{2}}$.



$$Dom(f) =$$

$$x_0 \in (0, +\infty)$$

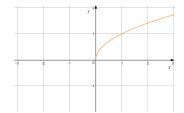
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{\sqrt{x} - \sqrt{x_0}}{x - x_0} =$$

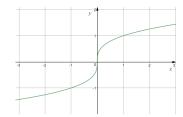
Agora, iremos analisar quando $x_0 = 0$ (caso em que o ponto está no extremo do domínio).

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(x_0)}{x - 0} = \lim_{x \to 0} \frac{\sqrt{x} - \sqrt{0}}{x} =$$

Logo,
$$D_x(\sqrt{x}) = \frac{1}{2\sqrt{x}} = \frac{1}{2} \cdot x^{\frac{1}{2}-1}, \forall x \neq 0$$
.

• Seja $f(x) = \sqrt[n]{x} = x^{\frac{1}{n}}$ onde $n \in \mathbb{N}$.





$$x_0 \in Dom(f) - \{0\}.$$

Logo,
$$D_x(\sqrt[n]{x}) = D_x(x^{\frac{1}{n}}) = \frac{1}{n} \cdot x^{\frac{1}{n}-1}, \forall x \neq 0.$$

Pergunta: O que acontece quando $x_0 = 0$?

• Seja
$$f(x) = \frac{1}{x^n} = x^{-n}, n \in \mathbb{N}.$$

 $x_0 \in Dom(f) = \mathbb{R} - \{0\}.$

Logo,
$$D_x(x^{-n}) = -n \cdot x^{-n-1}, \forall x \neq 0$$
.

Exercício: Seja $f(x) = \begin{cases} x^2 \cdot sen\left(\frac{1}{x}\right), & \text{se } x \neq 0 \\ 0, & \text{se } x = 0 \end{cases}$. Calcule, caso exista, f'(0) e se possível encontre a equação da reta tangente ao gráfico de f em (0, f(0)).

Exercício: Seja $f(x) = \begin{cases} x^2 + 1, & \text{se } x < 0 \\ x, & \text{se } x \geqslant 0 \end{cases}$. Calcule, caso exista, f'(0) e se possível encontre a equação da reta tangente ao gráfico de f em (0, f(0)).

Derivada das funções logaritmo e exponencial

1. Sejam
$$f(x) = e^x e x_0 \in Dom(f) =$$

$$f'(x_0) = \lim_{h \to 0} \frac{e^{x_0 + h} - e^{x_0}}{h} = \lim_{h \to 0} e^{x_0} \cdot \frac{e^h - 1}{h} = e^{x_0} \cdot 1 = e^{x_0}.$$

Logo,
$$D_x(e^x) = e^x$$

Exercício: Determine a equação da reta tangente a f no ponto (0, f(0)).

2. Sejam f(x) = ln(x) e $x_0 \in Dom(f) =$

$$f'(x_0) = \lim_{h \to 0} \frac{\ln(x_0 + h) - \ln(x_0)}{h} = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(\frac{x_0 + h}{x_0}\right) = \lim_{h \to 0} \ln\left(\frac{x_0 + h}{x_0}\right)^{\frac{1}{h}} = \lim_{h \to 0} \ln\left(1 + \frac{h}{x_0}\right)^{\frac{1}{h}} = \ln\left(\lim_{h \to 0} \left(1 + \frac{h}{x_0}\right)^{\frac{1}{h}}\right) = \ln\left(\frac{1}{e^{x_0}}\right) = \frac{1}{x_0}$$

$$\text{Logo, } D_x(\ln(x)) = \frac{1}{x}.$$

Derivada das funções seno e cosseno 1. Seja f(x) = sen(x) e $x_0 \in Dom(f) =$

$$f'(x_0) = \lim_{h \to 0} \frac{sen(x_0 + h) - sen(x_0)}{h} =$$

Logo,
$$D_x(senx) = cos(x)$$
.
2. Seja $f(x) = cos(x)$ e $x_0 \in Dom(f) =$

$$f'(x_0) = \lim_{h \to 0} \frac{cos(x_0 + h) - cos(x_0)}{h} =$$

Logo,
$$D_x(cosx) = -sen(x)$$
.

Propriedades da Derivada: Sejam f e g duas funções diferenciáveis em x_0 e $K \in \mathbb{R}$ uma constante.

- 1. $(f+g)'(x_0) = f'(x_0) + g'(x_0)$
- 2. $(K \cdot f)'(x_0) = K \cdot f'(x_0)$
- 3. **Regra do Produto:** $(f \cdot g)'(x_0) = f(x_0) \cdot g'(x_0) + f'(x_0) \cdot g(x_0)$

4. Regra do quociente:
$$\left(\frac{f}{g}\right)'(x_0) = \frac{g(x_0) \cdot f'(x_0) - g'(x_0) \cdot f(x_0)}{(g(x_0))^2}$$
 se $g(x_0) \neq 0$

demonstração:

1.
$$(f+g)'(x_0) = \lim_{x \to x_0} \frac{(f+g)(x) - (f+g)(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x) + g(x) - f(x_0) - g(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} = f'(x_0) + g'(x_0)$$
2.
$$(K \cdot f)'(x_0) = \lim_{x \to x_0} \frac{(Kf)(x) - (Kf)(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{Kf(x) - Kf(x_0)}{x - x_0} = K \cdot \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = K \cdot f'(x_0)$$

$$(f \cdot g)'(x_0) = \lim_{x \to x_0} \frac{(fg)(x) - (fg)(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - g(x)f(x_0) + g(x)f(x_0) - f(x_0)g(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{g(x)[f(x) - f(x_0)] + f(x_0)[g(x) - g(x_0)]}{x - x_0}$$

$$= \lim_{x \to x_0} g(x) \cdot \frac{f(x) - f(x_0)}{x - x_0} + \lim_{x \to x_0} f(x_0) \cdot \frac{g(x) - g(x_0)}{x - x_0}$$

$$= g(x_0) \cdot f'(x_0) + f(x_0) \cdot g'(x_0)$$

4. Primeiramente, usando a regra do produto, temos que

$$\left(\frac{f}{g}\right)'(x_0) = \left(f \cdot \frac{1}{g}\right)'(x_0) = f(x_0) \cdot \left(\frac{1}{g}\right)'(x_0) + f'(x_0) \cdot \frac{1}{g(x_0)}$$

Agora, vamos calcular $\left(\frac{1}{g}\right)'(x_0)$:

$$\left(\frac{1}{g}\right)'(x_0) = \lim_{x \to x_0} \frac{\frac{1}{g(x)} - \frac{1}{g(x_0)}}{x - x_0} = \lim_{x \to x_0} \frac{\frac{g(x_0) - g(x)}{g(x) \cdot g(x_0)}}{x - x_0} = \lim_{x \to x_0} -\frac{g(x) - g(x_0)}{x - x_0} \cdot \frac{1}{g(x) \cdot g(x_0)} = -\frac{g'(x_0)}{(g(x_0))^2}$$
Portanto.

$$\left(\frac{f}{g}\right)'(x_0) = f(x_0) \cdot \left(\frac{1}{g}\right)'(x_0) + f'(x_0) \cdot \frac{1}{g(x_0)} = -f(x_0) \cdot \frac{g'(x_0)}{(g(x_0))^2} + \frac{f'(x_0)}{g(x_0)} = \frac{g(x_0) \cdot f'(x_0) - g'(x_0) \cdot f(x_0)}{(g(x_0))^2}$$

Derivada das outras funções trigonométricas

1.
$$D_x(tg(x)) = sec^2(x)$$

2. Exercício: $D_x(sec(x)) = sec(x) \cdot tg(x)$

3. Exercício: $D_x(cossec(x)) = -cossec(x) \cdot cotg(x)$

4. Exercício: $D_x(cotg(x)) = -cossec^2(x)$

Exemplo de derivada usando as propriedades: Calcule a derivada das seguintes funções:

1.
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
.

2.
$$f(x) = x^3 \sqrt{x} - x^2 |x| + e^x \cdot sen(x) + tg(x)$$

3.
$$f(x) = \frac{x^3 + 6x^2}{2\sqrt{x}} + \ln(x)$$

Cálculo I e Cálculo Diferencial e Integral I - Professora: Mariana G. Villapouca

Derivada

Aula 19 - Derivadas laterais, regra da cadeia e derivadas de ordem superior

Derivadas laterais Para que uma função f seja diferenciável em x_0 devemos ter que as derivadas laterais abaixo existem e assumem o mesmo valor que será o valor de $f'(x_0)$

$$f'_{+}(x_0) = \lim_{x \to x_0^{+}} \frac{f(x) - f(x_0)}{x - x_0}$$

$$f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0}$$

Observação 5.

- Note que se uma das derivadas laterais não existir ou se as derivadas laterais assumem valores distintos, temos que a função não será diferenciável no ponto onde isso acontece.
- Para calcular a derivada das funções que são definidas por partes devemos usar as derivadas laterais.

Exemplos de derivada de funções definidas por partes:

1. Seja
$$f(x) = \begin{cases} sen(x), & \text{se } x \leq 0 \\ x^2 + 2x, & \text{se } x > 0 \end{cases}$$
. A função f é contínua em $x = 0$? A função f é diferenciável em $x = 0$?

2. Seja $f(x)=\left\{ egin{array}{ll} e^{x-1}, & \text{se }x<1\\ 1+ax+bx^2, & \text{se }x\geqslant 1 \end{array} \right.$ Existem valores a e b de maneira que f seja diferenciável em x=1?

Regra da Cadeia (derivada de uma composição de funções):

Sejam y = f(x) e x = g(t) duas funções diferenciáveis, com $Im(g) \subset Dom(f)$. Então $h(t) = f \circ g(t) = f(g(t))$ é diferenciável e sua derivada é

$$h'(t) = f'(g(t)) \cdot g'(t)$$

Observação 6 (Regra da Cadeia com a notação de Leibniz). Seja y=f(x) e x=g(t), então

$$\boxed{\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}}$$

Exemplos de derivada de funções compostas (Regra da Cadeia): Calcule a derivada das seguintes funções.

1.
$$h(t) = (t^2 - t + 1)^{1000}$$

$$2. \ f(x) = sen(cos(\sqrt{3x+1}))$$

3.
$$g(x) = sen(arctg(x^2 + 1))$$
, sabendo que $D_x(arctg(x)) = \frac{1}{1 + x^2}$

4. Seja $g: \mathbb{R} \to \mathbb{R}$ diferenciável onde $g(0) = \frac{1}{2}$ e g'(0) = 1. Calcule f'(0), onde $f(x) = (\cos(x)) \cdot g^2 \left(tg\left(\frac{x}{x^2 + 2}\right) \right)$.

5. Sejam $y = u \cdot cos^2(u^3)$ e u = u(t). Calcule $\frac{dy}{dx}$.

6. Exercício: Calcule a deriva acima quando u = ln(x).

Função derivada e derivadas de ordem superior: Seja f uma função e $A = \{x \in Dom(f) \mid \exists f'(x)\}.$

Função derivada de
$$f$$

$$\begin{array}{cccc} f': & A & \to & \mathbb{R} \\ & x & \mapsto & f'(x) \end{array}$$

(derivada de primeira ordem de f)

A derivada da função f', f'', é a derivada de segunda ordem de f. E assim, $f^{(n)}$ é a derivada de ordem n ou n-ésima derivada de f.

Exemplos de derivadas de ordem superior:

1. Seja
$$f(x) = x^5 + 2x^2 + 5$$
. Calcule $f^{(n)}(x), \forall n \in \mathbb{N}$.

2. Sejam y = cos(u) e u = u(x). Calcule $\frac{d^2y}{dx^2}$.

Cálculo I e Cálculo Diferencial I - Professora: Mariana G. Villapouca

Aula 20 - Diferenciação Implícita e Derivação Logarítmica

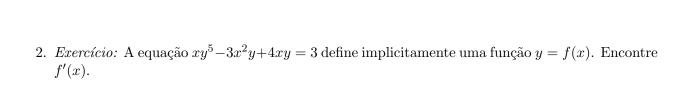
Diferenciação Implícita Dizemos que uma dada equação nas variáveis x e y define a função f implicitamente se para todo $x \in Dom(f)$ temos que (x, f(x)) é solução desta equação.

Nem toda função definida implicitamente por uma equação pode ser colocada em sua forma explícita. Por exemplo, a função y = f(x) dada implicitamente por $xy^5 - 3x^2y + 4xy = 3$.

Mas para encontrar a derivada de uma função definida implicitamente não é preciso explicitar uma tal função, podemos simplesmente derivar a equação que a define usando a **Regra de Cadeia** para encontrar a sua derivada.

Exemplos de diferenciação implícita:

- 1. Dada uma equação $x^2 + 4y^2 2x + 16y + 13 = 0$ que representa uma elipse, determine:
 - (a) os pontos da elipse onde a reta tangente é horizontal.
 - (b) os pontos da elipse onde a reta tangente é vertical.



3. Use a diferenciação implícita para encontrar $\frac{dy}{dx}$ se $5y^2 + seny = x^2$.

4. Supondo que y = arctg(x) é derivável em \mathbb{R} , calcule $\frac{dy}{dx}$.

5. **Exercício:** Supondo que y = arcsen(x) é derivável em (-1,1), calcule $\frac{dy}{dx}$.

Derivação Logarítmica Sejam f e g funções deriváveis em um intervalo I onde $f(x) > 0, \forall x \in I$. Se definirmos

$$y = (f(x))^{g(x)}$$

como calcular $\frac{dy}{dx}$?

Primeiro iremos aplicar a função $\ln(x)$ em ambos os lados da igualdade para fazermos uso das propriedade do logaritmo

$$ln(y) = ln((f(x))^{g(x)}) = g(x) \cdot ln(f(x))$$

Agora, derivando implicitamente a equação acima, obtemos

$$\frac{1}{y} \cdot \frac{dy}{dx} = g'(x) \cdot \ln(f(x)) + g(x) \cdot \frac{1}{f(x)} \cdot f'(x)$$

Logo,

$$\frac{dy}{dx} = (f(x))^{g(x)} \cdot \left(g'(x) \cdot \ln(f(x)) + \frac{g(x)}{f(x)} \cdot f'(x)\right)$$

Observação 7. Uma outra maneira de olhar tal função:

$$(f(x))^{g(x)} = e^{\ln(f(x))g(x)} = e^{g(x)\cdot\ln(f(x))}$$

e usar a regra da cadeia para derivar

$$[(f(x))^{g(x)}]' = e^{g(x) \cdot ln(f(x))} \cdot [g(x) \cdot ln(f(x))]'$$

Exemplos de derivação logarítmica: Calcule a derivada das seguintes funções:

1.
$$y = x^{\sqrt{x}}$$

2.
$$y = (x^2 + 3x - 4)^{lnx}$$

Cálculo I e Cálculo Diferencial I - Professora: Mariana G. Villapouca

Aula 21 - Teorema da Função Inversa

Teorema da Função Inversa Como determinar se uma função tem inversa?

Teorema 2. Uma função $f:Dom(f) \to Im(f)$ é injetora se, e somente se, f é invertível, isto é, f possui inversa.

demonstração:

 (\Rightarrow) : Como f é injetora, temos que se $x_1 \neq x_2$ então $f(x_1) \neq f(x_2)$. Assim, se $y = f(x) \Leftrightarrow f^{-1}(y) = x$.

 (\Leftarrow) : Sejam $x_1, x_2 \in Dom(f)$ tal que $f(x_1) = f(x_2)$, então, aplicando f^{-1} em ambos os lados da igualdade, tem-se que $x_1 = x_2$.

Teorema 3. Uma função $f: Dom(f) \to Im(f)$ tem inversa se, e somente se, f é monótona, isto é, se para todo $x_1, x_2 \in Dom(f)$ com $x_1 < x_2$ tem-se que $f(x_1) < f(x_2)$ ou $f(x_1) > f(x_2)$.

demonstração:

 (\Rightarrow) : Se $x_1 < x_2 \Rightarrow f(x_1) \neq f(x_2) \Rightarrow f(x_1) < f(x_2)$ ou $f(x_1) > f(x_2)$, então f é monótona.

 (\Leftarrow) : Se $x_1 \neq x_2$ então

- $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$ ou $f(x_1) > f(x_2) \Rightarrow f(x_1) \neq f(x_2)$ ou
- $x_2 < x_1 \Rightarrow f(x_1) < f(x_2)$ ou $f(x_1) > f(x_2) \Rightarrow f(x_1) \neq f(x_2)$

Teorema 4 (da Função Inversa). Seja $f: I \to J$ onde $I \subset Dom(f)$ e J = f(I) são intervalos. Se f é diferenciável em I e $f'(x) \neq 0$, $\forall x \in I$, então f tem inversa f^{-1} . Além disso,

$$f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

demonstração: Sejam $x_1 < x_2$ em I, então $[x_1, x_2] \subset I$, daí temos que f é contínua em $[x_1, x_2]$ e diferenciável em (x_1, x_2) , logo, pelo Teorema do Valor Médio (que veremos nas próximas aula), existe um $c \in (x_1, x_2) \subset I$ tal que $0 \neq f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$, logo $\frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0$ ou $\frac{f(x_2) - f(x_1)}{x_2 - x_1} < 0$, e como $x_2 - x_1 > 0$ teremos que $f(x_2) - f(x_1) > 0$ ou $f(x_2) - f(x_1) < 0$. Portanto, f é monótona em I e, pelo teorem acima, f é invertível em I.

Seja f^{-1} a função inversa de f em I, então $(f \circ f^{-1})(x) = x$, e derivando implicitamente esta equação obtemos que

$$\frac{d}{dx}(f \circ f^{-1})(x) = \frac{d}{dx}(x) \Rightarrow f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$$

e assim, como $f'(x) \neq 0, \forall x \in I$ teremos que

$$f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

Exemplos para encontrar a derivada de funções usando o Teorema da Função Inversa:

1. Seja $f(x) = x \cdot e^x$ com domínio $D = (-1, +\infty)$. Mostre que f é invertível em D, calcule $(f^{-1})'(e)$ e $(f^{-1})'(f(0))$.

2. Seja f(x) = sen(x) com domínio $D = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Mostre que f é invertível em D e que

$$D_x(arcsen(x)) = \frac{1}{\sqrt{1-x^2}}, |x| < 1$$

3. Exercício: Seja f(x) = cos(x) com domínio $D = (0, \pi)$. Mostre que f é invertível em D e que

$$D_x(\arccos(x)) = -\frac{1}{\sqrt{1-x^2}}, |x| < 1$$

4. Seja f(x)=tg(x) com domínio $D=\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$. Mostre que f é invertível em D e que

$$D_x(arctg(x)) = \frac{1}{1+x^2}$$

5. **Exercício:** Seja $f(x) = arctg(x) + \frac{x}{x^2 + 1}$. Prove que f é invertível em \mathbb{R} e calcule $(f^{-1})'(f(0))$.