Universidade do Estado do Rio de Janeiro

Cálculo I e Cálculo Diferencial I - Professora: Mariana G. Villapouca

Aplicações da Derivada

Aula 22 - Regra de L'Hôspital

Regra de L'Hôspital: Suponha que f e g sejam deriváveis e que $g'(x) \neq 0$ em $(a - \delta, a) \cup (a, a + \delta)$ para algum $\delta > 0$. Se

$$\lim_{x \to a} f(x) = 0 \text{ e } \lim_{x \to a} g(x) = 0 \text{ ou } \left[\lim_{x \to a} f(x) = \pm \infty \text{ e } \lim_{x \to a} g(x) = \pm \infty \right]$$

então

$$\left| \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \right|$$

se o segundo limite existir ou for $\pm \infty$.

Observação 1. Esta regra também é válida para $x \to a^+$, $x \to a^-$, $x \to +\infty$ e $x \to -\infty$.

demonstração:

Para provar a Regra de L'Hôspital, iremos precisar do seguinte resultado:

Teorema 1 (do Valor Médio de Cauchy). Se f e g são duas funções contínuas em [a,b] e deriváveis em (a,b) onde $g'(x) \neq 0, \forall x \in (a,b)$, então existe $c \in (a,b)$ tal que

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

E a sua demonstração é bastante simples, basta aplicar o Teorema de Rolle na função $h(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a))$. (Verifique!)

Agora, vamos provar a Regra de L'Hôspital para o caso $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ e vamos supor que existe $\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$ (os outros casos seguem de maneira análoga). Devemos mostrar que $\lim_{x\to a} \frac{f(x)}{g(x)} = L$.

Defina $F(x) = \begin{cases} f(x), & \text{se } x \neq a \\ 0, & \text{se } x = a \end{cases}$ e $G(x) = \begin{cases} g(x), & \text{se } x \neq a \\ 0, & \text{se } x = a \end{cases}$, note que existe um intervalo I contendo a onde f e g são contínuas em $I - \{a\}$, e portanto F e G serão contínuas em I.

Agora, seja $x \in I$ com x > a. Então F e G são contínuas em [a,x] e deriváveis em (a,x) e ainda $G'(x) \neq 0$ em (a,x) (uma vez que F' = f' e G' = g' em (a,x)). Portanto, pelo Teorema do valor médio de Cauchy, existe $c \in (a,x)$ tal que

$$\frac{F'(c)}{G'(c)} = \frac{F(x) - F(a)}{G(x) - G(a)} = \frac{F(x)}{G(x)}$$

pois F(a) = G(a) = 0. Como $x \to a^+ \Rightarrow c \to a^+ \ (a < c < x)$, logo

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{F(x)}{G(x)} = \lim_{c \to a^+} \frac{F'(c)}{G'(c)} = \lim_{c \to a^+} \frac{f'(c)}{g'(c)} = L$$

Analogamente, provamos que $\lim_{x\to a^-} \frac{f(x)}{g(x)} = L$. Portanto,

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L$$

Observação 2. Para demonstrar o caso em que a é infinito, basta fazer a mudança de variável $t = \frac{1}{x}$ e assim quando $x \to +\infty$ temos que $t \to 0^+$, e daí

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{t \to 0^+} \frac{f(1/t)}{g(1/t)} = \lim_{t \to 0^+} \frac{f'(1/t) \cdot (-1/t^2)}{g'(1/t) \cdot (-1/t^2)} = \lim_{t \to 0^+} \frac{f'(1/t)}{g'(1/t)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$$

Exemplos:

1.
$$\lim_{x \to 1} \frac{\ln(x)}{x - 1}$$

$$2. \lim_{x \to +\infty} \frac{e^x}{x^2}$$

- 3. Exercício: $\lim_{x \to +\infty} \frac{ln(x)}{\sqrt[3]{x}}$
- 4. Exercício: $\lim_{x\to 0} \frac{tg(x)-x}{x^3}$

Veremos a seguir como tratar outros casos de indeterminação de maneira a cairmos no caso $\frac{0}{0}$ ou $\frac{\infty}{\infty}$ onde podemos usar a Regra de L'Hôspital.

Produto indeterminado: $0 \cdot \infty$

Se $\lim_{x\to a} f(x) = 0$ e $\lim_{x\to a} g(x) = \pm \infty$, então podemos reescrever:

- $\lim_{x \to a} f(x) \cdot g(x) = \lim_{x \to a} \frac{f(x)}{\left(\frac{1}{g(x)}\right)}$ (estaremos no caso $\frac{0}{0}$) $\lim_{x \to a} f(x) \cdot g(x) = \lim_{x \to a} \frac{g(x)}{\left(\frac{1}{f(x)}\right)}$ (estaremos no caso $\frac{\infty}{\infty}$)

Exemplos:

 $1. \lim_{x \to 0^+} x \cdot ln(x)$

2. Exercício: $\lim_{x\to 0^+} x^2 \cdot ln(x)$

Diferença indeterminada: $\infty - \infty$ (em cada caso tentar transformar em um quociente onde recai em $\frac{0}{0}$ ou $\frac{\infty}{\infty}$).

Exemplo: $\lim_{x \to \frac{\pi}{2}^-} (sec(x) - tg(x))$

Potências indeterminadas: $0^0, \infty^0 \ e^{-1\infty}$

Sejam f(x) > 0 e g(x) tais que $[f(x)]^{g(x)}$ está bem definida.

•
$$\lim_{x \to a} f(x) = 0$$
 e $\lim_{x \to a} g(x) = 0$

•
$$\lim_{x \to a} f(x) = \infty$$
 e $\lim_{x \to a} g(x) = 0$

•
$$\lim_{x \to a} f(x) = 1$$
 e $\lim_{x \to a} g(x) = \infty$

Usaremos um dos dois métodos abaixo para recairmos no caso $0 \cdot \infty$:

Fazendo $y = [f(x)]^{g(x)} \Rightarrow ln(y) = g(x) \cdot ln(f(x))$, temos

$$\lim_{x \to a} [f(x)]^{g(x)} = \lim_{x \to a} \ln(y) = \lim_{x \to a} g(x) \cdot \ln(f(x))$$

Fazendo $[f(x)]^{g(x)} = e^{g(x) \cdot ln(f(x))}$, temos

$$\lim_{x \to a} [f(x)]^{g(x)} = \lim_{x \to a} e^{g(x) \cdot \ln(f(x))} = \lim_{x \to a} g(x) \cdot \ln(f(x))$$

Exemplos:

1.
$$\lim_{x \to 0^+} (1 + sen(2x))^{\frac{1}{x}}$$

$$2. \lim_{x \to 0^+} x^x$$

3. Exercício:
$$\lim_{x\to +\infty} (e^x+7)^{\frac{1}{x}}$$