maio 22, 2015
Atividades suspensas nas UERJ dia 22/05/15
O reitor suspendeu as atividades na UERJ amanhã por causa de possíveis manifestações violentas. Segue abaixo a circular que se encontra na página da UERJ. Vou colocar amanhã a lista de derivadas no site. Nos vemos segunda. Bom final de...
read more
maio 19, 2015
Notas P1 – 508 – T1 – CECON
Notas Provas – 00508- T1 – CECON P1_00508_T1 Observações sobre a primeira prova: Lembrem que as funções e^x  e ln(x) são funções inversas uma da outra e portanto os seus gráficos são simétricos em relação a reta y=x. A função g da questão 2 é uma função partida, para analisar a sua continuidade devemos olhar nos intervalos (-infinito, 0), (0,1) e (1, + infinito) a continuidade das funções separadas, e nos pontos  0 e 1, onde a função parte, para analisar a continuidade devemos  calcular, primeiramente, os limites laterais e com isso conseguimos  calcular, caso exista, o limite da função nestes pontos delicados. Na questão 3 item (a)  devemos analisar o sinal da função quociente para concluir se vai para + infinito ou – infinito quando estamos num caso “L/0”. Na questão 3 item (b) deve-se tomar cuidado para não separar os limites e encontrar indeterminações do tipo infinito menos infinito ou zero vezes infinito. Na questão 3 item (c), bastava observar que (1- cos^2(2x)) = sen^2(2x) e tg(x) = sen(x)/cos(x), e daí bastava usar o limite fundamental lim_{x->0} sen(x)/x = 1. Na questão 4 item (a) era falsa, pois como lim_{x->0} x^{2} = 0 e sen(1/x^2) é limitada nos reais menos o zero,...
read more
maio 17, 2015
Notas P1 – 4287 – T1 – CAT
P1_04287_T1 Notas Provas – 4287 – T1 – CAT Observações sobre essa primeira prova: A função arctg(x) é a função inversa da função tg(x) no intervalo (-pi/2, pi/2). A função g da questão 2 é uma função partida, para analisar a sua continuidade devemos olhar nos intervalos (-infinito, 0), (0,1) e (1, + infinito) a continuidade das funções separadas, e nos pontos  0 e 1, onde a função parte, para analisar a continuidade devemos  calcular, primeiramente, os limites laterais e com isso conseguimos  calcular, caso exista, o limite da função nestes pontos delicados. Na questão 3 item (a)  devemos analisar o sinal da função quociente para concluir se vai para + infinito ou – infinito quando estamos num caso “L/0”. A questão 3 item (b) fizemos o limite quando x vai para + infinito dessa mesma função na aula de exercícios. Na questão 3 item (c), bastava observar que (1- cos^2(x)) = sen^2(x) e tg(2x) = sen(2x)/cos(2x), e daí bastava usar o limite fundamental lim_{x->0} sen(x)/x = 1. A questão 4 item (a) era verdadeira e bastava observar que sen(1/x^2) é limitada para todo x diferente de zero e lim_{x->0} x^2 = 0, e portanto, pelo teorema do anulamento, lim_{x->0} x^2  sen(1/x^2)= 0. A questão...
read more
maio 17, 2015
Atendimento dia 18/05/15 (segunda-feira)
Nesta segunda-feira dia 18/05/15 não haverá atendimento e nem vista de testes. Na quarta-feira dia 20/05/15 o atendimento será normal.
read more
popular articles
random articles
